*Forum d'entraide pour les élèves de l'Ecole Chez Soi *
FAQFAQ  RechercherRechercher  S’enregistrerS’enregistrer  ProfilProfil  MembresMembres  GroupesGroupes  Se connecter pour vérifier ses messages privésSe connecter pour vérifier ses messages privés  ConnexionConnexion 



 INFORMATIONS 
Bienvenue


Invité  

BG 2201 - Mathématiques supérieures BTS Bâtiment - Série 01. Pour les séries < 10, mettre le 0 pour la chronologie des séries.
Merci de suivre l'exemple, et regardez les sujets existants avant de poster.
Tous messages faisant doublons avec un autre sera effacé définitivement, ainsi un BG 2201 - ... - Série 01 (bis) : post effacé.
Pour la création de posts, merci d'envoyer un MP à l'administrateur, merci ! Tous sujets postés au mauvais endroit seront effacés !!!

Je suis désolé de dire cela mais APPRENEZ à LIRE !!! Beaucoup d'entre vous ne lisent pas l'entête ; à partir de maintenant je supprimerai tous messages ne correspondant pas à l'entête pour les cours !!! Marre de repasser derrière vous pour modifier ; ceci pour garder une certaine harmonie sur le forum.
    
 
 
 
 
         
BC 902 - Trigonométrie professionnelle - Série 01
Aller à la page: 1, 2  >
 
Répondre au sujet     Index du Forum -> ZONE ENTRAIDE FORMATION -> Maths et Géométrie
Sujet précédent :: Sujet suivant  
Auteur Message
VIGNEAU
Invité

Hors ligne




MessagePosté le: 18/02/2008 12:58:30    Sujet du message: BC 902 - Trigonométrie professionnelle - Série 01 Répondre en citant

PublicitéSupprimer les publicités ?
J'aurais bes oin d'une information concernant un enoncé. Si quelqu'un pourrais m'aider merci.
Voila l'enoncé
PROBLEME 1
1) On demande d'evaluer en degré, minutes et secondes, l'angle alpha dont la mesure est 5pi/17 radians. Meme question pour l'angle bétha=45.752grades.

2)On considère maintenant l'angle alpha=42°54'2''. Evaluer cet angle en grades et en radians à 0.001 pres.

3) §Quelle est la longueur a 1/100 pres de l'arc intercepté par l'angle sur un cercle dont le rayon est égal à 5cm et dont le centre est le sommet de l'angle.
On prendra PI=3.1416

Ma question se pose sur quel angle on doit prendre si c celui que l'on a calculé en radians dans la question.

Merci de votre aide
Revenir en haut
Auteur Message
Benoît


Hors ligne

Inscrit le: 28 Mai 2007
Messages: 18
Formation: Calculateur projeteu
Localisation: 36 Le Tranger

MessagePosté le: 19/02/2008 22:27:19    Sujet du message: BC 902 - Trigonométrie professionnelle - Série 01 Répondre en citant

Bonjour,

Tu dois donner la formule générale qui te permet de calculer cet angle,
puis tu calcul la longueur de l'arc avec l'angle de la question 2, soit alpha=42°54'2".

Bonne chance et à bientôt.
  
            Smile
Revenir en haut
Auteur Message
paco
Invité

Hors ligne




MessagePosté le: 11/04/2008 15:11:08    Sujet du message: BC 902 - Trigonométrie professionnelle - Série 01 Répondre en citant

Hello tout le monde,
I need help
je bloque un peu sur le probleme 5 de la serie 2.
Voici l'enoncé
Résoudre l'equation :

   - 4 cos² x  +  2(rc3 - 1) sin x  + 4 - rc3  = 0

j'arrive a une equation de la forme:

   4 sin² x  +  2(rc3 - 1) sin x  -  rc3  =  0

soit en posant X = sin x

  4X² + 2(rc3 - 1) X - rc3 = 0

logiquement , on doit trouver un delta qui est un carré parfait
mais j'arrive a un delta = 16 + 8rc3

Si quelqu'un a fait ce devoir, peut-il me donner un indice, merci
A+

PS : Attention , je ne veux pas la solution, mais seulement un indice
Revenir en haut
Auteur Message
bus.driver
Invité

Hors ligne




MessagePosté le: 11/04/2008 18:22:20    Sujet du message: BC 902 - Trigonométrie professionnelle - Série 01 Répondre en citant

Salut Paco

J ais fais ce devoir il y quelques semaines mais je me souviens que ce résultat (16+8rc3)
me dérangeais assez mais je l’ais laissé et ensuite posé les deux solutions x1 et x2(sans même les simplifier)
 
Maintenant le corrigé du prof est comment dire, «  VAGUE » : un simple petit trait rouge pour valider ce résultat !
 
Une copie de 7 pages avec une unique erreur numérique signalée qui résulte de l’incompréhension d’intégrer le «  +2Kpi » dès le début de la résolution !
 
Et voila une erreur  2 , 3 petits traits rouge par ci par là pour valider le reste du devoir
Et  10/20 : dégouté !
 
Maintenant le meilleur c’est le corrigé !
 
 
L équation 4sinx^2  +  2(rc3-1)sinx  - rc3
 
En remplaçant sinx par X
 
Se transforme en 4X^2 -2(rc3-1)X –rc3
 
Encore mieux delta(ici écrit delta’) = (rc3-1)^2 + 4rc3
 
Ou est passé le -2(de b) et le 4 de ac !
 
S’en suit 2 résultats et un système à résoudre !!!
 
Comme tu peux le savoir ca laisse à désirer !!
 
En admettant une erreur de signe dans l’énoncé  sur le 2ème terme
Le delta est tout aussi farfelu et donne des solutions inexploitables
 
C’est donc pas avec ces devoirs qu’on va augmenter notre moyenne générale
 
On à compris le principe du chapitre  mais nous on sait calculer un discriminant !
 
Moi je suis passé à la suite !
 
Mais c’est énervant de perdre du temps pour se retrouver avec un corrigé farfelu !!!
Revenir en haut
Auteur Message
Benoît


Hors ligne

Inscrit le: 28 Mai 2007
Messages: 18
Formation: Calculateur projeteu
Localisation: 36 Le Tranger

MessagePosté le: 11/04/2008 21:56:51    Sujet du message: Cours BC902 Répondre en citant

Bonjour Paco.

En ce qui me concerne, j'ai fais ce devoir il y a quelques mois et je l'ai réussi.
Je peux  donc te dire que tu es sur la bonne voix, on obtient  évidemment
un delta de: 16+8√3>0

Tu as donc 2 solutions et tu dois obtenir en définitif 4 solutions pour l'équation.

 Bon courage.
                 Smile
Revenir en haut
Auteur Message
paco
Invité

Hors ligne




MessagePosté le: 11/04/2008 22:56:38    Sujet du message: BC 902 - Trigonométrie professionnelle - Série 01 Répondre en citant

Merci pour vos reponses,
si j'ai bien compris je suis sur la bonne voie, mais je pense qu'un autre probleme se pointe a l'horizon
en effet, il me faudra la racine carré de Delta pour le calcul de mes solutions,
or ( 16 + 83), ca risque de se compliquer non?
Revenir en haut
Auteur Message
paco
Invité

Hors ligne




MessagePosté le: 13/04/2008 13:49:57    Sujet du message: BC 902 - Trigonométrie professionnelle - Série 01 Répondre en citant

Bon j'ai fini l'exo...
c'est un peu tiré par les cheveux la solution
en fait , pour eux,  16+8√3 est un carré parfait...
donc il fallait remarquer que
16 + 8√3 = 4(4 + 2√3)

(√3 + 1)² = 4 + 2√3

d'ou 16 + 8√3 = [2(√3 + 1)]²

et s'en suit le reste de l'exo...
c'est finalement assez simple, mais leur indice signalement que le discriminant est un carré parfait, est un peu en trop
Voila
Les membres suivants remercient Anonymous pour ce message :
patchoumag (25/01/15)
Revenir en haut
Auteur Message
rider.co
Invité

Hors ligne




MessagePosté le: 14/04/2008 20:52:05    Sujet du message: BC902 Répondre en citant

Bonjour,

j'aurai besoin d'aide concernant la série 1 exo 2
j'ai répondu a la première question qui été de calculer
sin PI/7; cos PI/7; sin 2PI/7

je bloque a partir de la question b:

En déduire la longueur du coté du polygone régulier convexe de 7 cotés inscrit dans un cercle de rayon R.

j'ai fais un schéma de l'énoncé mais je ne vois pas comment trouver la longueur du coté avec si peu d'infos. c vraiment loin d'être clair.
faut il seulement donner une formule théorique?

Si quelqu'un peux m'aider, merci d'avance.
Revenir en haut
Auteur Message
paco
Invité

Hors ligne




MessagePosté le: 14/04/2008 23:11:50    Sujet du message: BC 902 - Trigonométrie professionnelle - Série 01 Répondre en citant

Dans ton cours tu as les formules pour calculer les cotés Cn d'un polygone, ainsi que sa surface Sn
Dans le cas de cet exercice, il s'agit d'un polygone à 7 cotés, tu dois donc chercher C7 et S7
et tu remarques que dans ce cas-là, tu as besoin de sin(pi/7).
Voila, bon courage
Revenir en haut
Auteur Message
paco
Invité

Hors ligne




MessagePosté le: 18/04/2008 15:45:21    Sujet du message: BC 902 - Trigonométrie professionnelle - Série 01 Répondre en citant

Concernant le probleme IV de la série 4,
je trouve S = 20506
est-ce que quelqu'un peux me dire si c'est correct, j'ai un doute
merci
Revenir en haut
Auteur Message
bus.driver
Invité

Hors ligne




MessagePosté le: 18/04/2008 19:43:39    Sujet du message: pas loin Répondre en citant

AIE ! Moi j 'ais 20354.65  !!!

Avec S = 2Pi 6284.5  * rc2  * 0.3645

?
Revenir en haut
Auteur Message
paco
Invité

Hors ligne




MessagePosté le: 18/04/2008 20:21:42    Sujet du message: BC 902 - Trigonométrie professionnelle - Série 01 Répondre en citant

Ce n'est peut-etre qu'une question d'approximation

tu trouves bien sin(pi/4 - phi) = sin (45 - 23°27'22'') = sin (21°32'38'') ??
puis sin (21°32'38'') = 0,36721 ??
je ne vois pas comment tu trouves 0.3645
Revenir en haut
Auteur Message
bus.driver
Invité

Hors ligne




MessagePosté le: 18/04/2008 21:02:43    Sujet du message: Erreur dans la conversion Répondre en citant

OUI  Erreur dans la conversion  de 23°27'22"( j avais mis 23.623, je sais pas d ou j ais sorti ça)

J'étais sous speed pour finir et voila des erreurs numériques

Merci pour ta question qui me permets de corriger J envoie un paquet de devoir demain
Revenir en haut
Auteur Message
paco
Invité

Hors ligne




MessagePosté le: 18/04/2008 21:04:36    Sujet du message: BC 902 - Trigonométrie professionnelle - Série 01 Répondre en citant

Y'a pas de soucis, si on peux s'aider Wink
tu peux donc confirmer mon résultat ?
Revenir en haut
Auteur Message
bus.driver
Invité

Hors ligne




MessagePosté le: 18/04/2008 21:15:53    Sujet du message: Faute de frappe Répondre en citant

Jvé me coucher j en peux plus  je ME fatigue


Pardon C est bien 20506.27383
Revenir en haut
Auteur Message
Contenu Sponsorisé






MessagePosté le: 10/12/2016 16:39:08    Sujet du message: BC 902 - Trigonométrie professionnelle - Série 01

Revenir en haut
Montrer les messages depuis:   
Répondre au sujet     Index du Forum -> ZONE ENTRAIDE FORMATION -> Maths et Géométrie Toutes les heures sont au format GMT + 2 Heures
Aller à la page: 1, 2  >
Page 1 sur 2

 
Sauter vers:  
Index | créer un forum | Forum gratuit d’entraide | Annuaire des forums gratuits | Signaler une violation | Conditions générales d'utilisation
Powered by phpBB © 2001, 2016 phpBB Group
Traduction par : phpBB-fr.com
Arthur Theme